

Sources of Nanomaterials in Drinking Waters

Paul Westerhoff, PhD, PE, BCEE Arizona State University (Tempe, AZ)

Contributors: Ariel Atkinson, John Fortner, Michael Wong, Julie Zimmerman, Jorge Gardea-Torresdey, James Ranville, Pierre Herckes

> Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment

Pedro Alvarez Exemplifies the Bio-Nano-Convergence

Like bacteria he emerged from hot springs

... Is fueled by organic substrates

He colonizes with other prominent types of bacteria & roams the earth...

anrosiur Pedroconvergium sp.

... Understanding how Life and Nanotechnology Interact...

... and facilitates high impact interdisciplinary science at convergence of bio- & nano-technology

...And he is always wearing a smile!

Nano convergence Bio Techno

Sources of Nanomaterials in Drinking Waters

Do we know the levels or origins of nanomaterials in drinking water sources or tap water?

Could or should we be measuring nanomaterials in tap water?

Potential Sources of Natural, Incidental and Engineering NMs into water supplies

Particle size distributions across many water types follow Pareto's Law

Pareto's Law Distributions of Equivalent TiO₂ # Concentrations

Reference: Total # natural 10 nm particles is ~ 10⁹/mL

Nanomaterial Measurement Methods

NATURE Vol 444 16 November 2006

COMMENTARY

- Colorimetry
- Fluorescence
- Electrochemical
- Light scattering or particle tracking
- Electron microscopy
- Single particle ICP-MS (*ICP-*TOF-MS)

Suitability for drinking waters & expected NP Concentrations? Comparison of ENP predicted surface water concentrations, background bulk concentrations, detection limits and drinking water standards (* Element has not MCL or SMCL in drinking water)

Adapted from Good et al., JAWWA 2016

Water Treatment Can Remove nano- and micron-sized particles

WTPs can monitor *micron* sized particles during treatment

Particle diameter (mm)

spICP-MS Time-resolved data of ⁴⁹Ti, ¹⁴⁰Ce and ¹⁰⁷Ag for Verde River and tap water

Verde River

Tap Water

Water Treatment Processes as Sources of Nanoparticles

- Nano-enabled sorbents
- Nano-enabled catalysts
- Nano-enabled membranes

Freely dispersed NMs require separation

RECIRCULATIO

CERAMIC ULTRAFILTRATION MEMBR

Attaching or embedding NMs reduces need for filtration systems

Nanoparticles on Macroscale Scaffolding

AC Fibers

Electrospun fibers

Ion exchange beads

Асс.V Spot Magn Det WD |------- 50 µm 5.00 kV 3.0 311x SE 10.1 ASU

jΑ()

Nano-Enabled Membranes Can Leach NMs?

Other sources of NPs into Tap Water

spICP-MS on Tap water can detect NPs

Summary

- Nanoparticles exist in source and tap waters
- Detection strategy
 - Element specific
 - # counting
 - Both?
- National NP Reconnaissance could generate baseline data
- Nano-enabled devices
 - Long-term operation & monitoring of required
 - What is an acceptable NP release level into tap water for regulated vs non-regulated elements?

Acknowledgements

Contributors:

- ASU: Ariel Atkinson, Pierre Herckes, Arjun Venkatesan, Yuqiang Bi, Sean Zimmerman, Bingru Han
- John Fortner, Michael Wong, Julie Zimmerman, Jorge Gardea-Torresdey, James Ranville
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment

...And he is always wearing a smile!

Engineered NPs likely represent a small fraction of all NPs

FIGURE 7 Considerations for PSDs when examining particles in natural waters. Data from Harris (1977)⁹⁴.

Ranville and Montano

Capability of commonly accessible methodology to characterize and quantify engineered NPs in natural water samples. Text color codes for analysis speed of water samples (#/day): >50 ; 10-50 ; <10.

	Least Sensitive< Qualitative <		> More Sensitive > More Quantitative
Mass	Turbidity	Colorimetric	Filter-Electrolysis
Concentration		NIRF *	MTA* TGA*
Number	Electron Mi	Electron Microscopy Electrical impedance	
Concentration			spICP-MS
			NTA
Size Distribution	DLS	Electron Microscopy	FFF-UV
]	Laser diffraction	Disc centrifugation
Size Distribution	Serial Ultrafiltration/Digested ICP-MS		FFF-ICP-MS
w/elemental	SEM/TEM-EDX		spICP-QMS
composition			spICP-TOF-MS
Morphology		SEM	AFM TEM

*For carbon analysis only: NIRF=Near Infrared Fluorescence; MTA=Microwave thermal analysis; TGA=thermogravimetric analysis; ICP-MS=Inductively coupled plama-mass spectrometry; spICP-MS=single particle ICP-MS (Q-quadrupole, TOF-Time of flight); DLS=Dynamic Light Scattering; FFF=field flow fractionation; SEM/TEM/EDX=scanning electron microscopy/transmission electron microscopy/energy-dispersive Xray analysis; AFM=atomic force microscopy; NIRF=near-infrared fluorescence spectroscopy

Regulatory implications for elements commonly used in engineered nanoparticles

(* provides commonly-occurring range in surface waters for nonregulated elements as a comparison)

Element	Regulatory Level		
present in			
ENPs			
Aluminum	SMCL = 0.05 to 0.2 mg/L		
Boron	No regulatory level but included on Contaminant Candidate List 2 (CCL2) (<1		
	mg/L)*		
Cadmium	MCL = 0.005 mg/L		
Carbon	Not directly regulated. Dissolved organic carbon is generally < 3 mg/L. Over 50		
	specific organic compounds are regulated based upon carcinogenicity.		
Copper	Action level = 1.3 mg/L ; SMCL = 1.0 mg/L		
Gold	No regulatory level (<20 ppt)*		
Iron	SMCL = 0.3 mg/L		
Nickel	Regulated until 1995 with an MCL = 0.1 mg/L		
Palladium	No regulatory level (< 50 ppt)*		
Platinum	No regulatory level (< 50 ppt)*		
Silica	No regulatory level (5 to 50 mgSiO ₂ /L)*		
Silver	SMCL = 0.1 mg/L		
Titanium	No regulatory level (0.001 to 0.01 mg/L)*		
Vanadium	No regulatory level but included on CCL3 (0.001 to 0.01 mg/L)*		
Zinc	SMCL = 5 mg/L		

Koy	Potential strategies	Example matrice
ксу	1 otential strategies	Example metrics
Considerations		
1. Material	Incorporate earth-abundant	Upper continental crust wt%
Selection	elements and trade-offs versus	abundance of elements in ENP; MCL,
	rare earth elements or toxic	SMCL or LC50 of element associated
	metals; prefer GRAS materials if	with ingestion
	possible	_
2. Material	Structure-property-function-	Life cycle DALY cost versus life
Structure/Property	hazard design guidance plots have	cycle DALY benefit (e.g., nano-
and Function and	been developed to guide rational	enabled drug delivery)
Hazard	selection and design of materials	
Interdependence		Life cycle energy consumed versus
		life cycle energy saved (e.g., nano-
	10 11 0	enabled batteries)
3. ENP Synthesis	Low energy self-assembly of	Embedded energy (KJ/KgENP) or
Route	than high energy content of some	virtual water (m /kgENP) required to
	ENPs (e.g. CNTs): wet synthesis	produce ENT
	instead of powder or aerosol	Vield of on-spec ENP
	production to minimize worker	Tield of on-spee Eivi
	exposure and maximize ENP yield	
	on device	
4. ENP	Strategy to incorporate nano-	Relative % surface or net wt% loading
Incorporation into	structures into macro-scale	of ENP in device
device	devices (e.g., tethering,	Loss of efficiency in pollutant
	enmeshing) without losing unique	removal between slurry and surface
	nano-scale property	attached ENP (e.g., electrical energy
		per order (EEO) removal (kWhr/m ³);
		specific membrane flux; adsorption
		density (µg/g sorbent))
5. ENP Detection	Ensure quantitative ENP	Obtain minimum detection limits at
	analytical methods exist on-line or	least one order of magnitude below
	development	standard or alament
	development	Standard or element
		guideline for pristing and transformed
		ENP from literature or studies
6 End-of-life	Design for recycling or non-toxic	Percentage composition or recycled
consideration	classification for disposal	products
		Metal loading (e.g., As) after long-
		term use

Thesis Objectives

Introduction

- Develop a extreme leaching test method water jet test, compare the water jet method with the batch test, dead-end filtration, and cross-flow filtration
- Determine the Ag leaching amount and percentage for every leaching tests
- Compare the four different leaching test results, coming up with which leaching test
 - —has the highest Ag leaching
 - -is the easiest to replicate
 - -is the most cost-effective
- Develop standard protocols for standard silver composite membrane leaching tests

Membrane Preparation

 Rinse the membrane with 3mM AgNO₃ solution 10 minutes, then discard the solution and left a thin layer on the top;

- 2. Rinse the membrane with $3mM NaBH_4$ solution for 5 minutes, then discard it;
- 3. Rinse the membrane with Nanopure water for 10 seconds

Four Test Solutions

Cl⁻ may influence Ag⁺ leaching, change to SO_4^{2+}

$$K_{sp,AgCl} = 1.6 x$$

10⁻¹⁰

Leaching Test — Water Jet

Leaching Test — Water Jet

Leaching Test — Batch Test

Leaching Test — Cross-flow

Samples were taken both for concentrate and permeate during the 50h

Pressure: 90 psi Feed flow rate: 1.8 GPM Permeate Flux: 20~40 L/hr/m² Operation time: 50 hrs Solution volume: 23 L (all the solution was recirculated in the system)

Leaching Test — Dead-end

SEM Images of RO with/without Silver Impregnation

Results

- The average silver loading on the membrane is $2.0 \pm 0.51 \ \mu g/cm^2$
- Lower than the Ag loading $(2 4 \mu g/cm^2)$ reported by Ben-

Water Jet — Ag Leaching Trend

Dead-end — Ag Ions vs. Ag NP in Filtrate

Results

Clean Water Grand Challenge

Engineering Research Centers (ERC)

- ERCs operate at the interface between the discovery-driven culture of science and the innovation-driven culture of engineering
- 2015 launched NSF Nanosystems ECR on Nano-Enabled Water Treatment (NEWT)

NEWT VISION

 Enable access to treated water almost anywhere in the world, by developing transformative and off-grid modular treatment systems empowered by nanotechnology that protect human lives and support sustainable development.

Focus on Two Applications

- Off-grid humanitarian, emergency-response and rural drinking water treatment systems
- Industrial wastewater reuse in remote sites (e.g., O&G)

Partners Across the Value Chain

Over Arching Science Questions

- How can we use novel nanoproperties for water purification?
- How can nano-materials be embedded into scaffolding without loosing their functionality?
- What "activation" modalities can be employed to replace use of chemicals?
- What safety concerns exist around nano-enabled water technologies?

Image Credit: M. Northrop/ASU

Operational Vision & Outcomes

APPLICATIONS AND OUTCOMES

HNOI OGICAL

INNOVATION

BASIC SCIENCE

AND DISCOVERY

COMMERCIALIZATION AND ECONOMIC DEVELOPMENT